33.1. Sampling the Uniform Distribution 33.2. Inverse Transform Method

نویسنده

  • G Cowan
چکیده

Monte Carlo techniques are often the only practical way to evaluate difficult integrals or to sample random variables governed by complicated probability density functions. Here we describe an assortment of methods for sampling some commonly occurring probability density functions. Most Monte Carlo sampling or integration techniques assume a " random number generator, " which generates uniform statistically independent values on the half open interval [0, 1); for reviews see, e.g.,[1, 2]. Uniform random number generators are available in software libraries such as CERNLIB [3], CLHEP [4], and ROOT [5]. For example, in addition to a basic congruential generator TRandom (see below), ROOT provides three more sophisticated routines: TRandom1 implements the RANLUX generator [6] based on the method by Lüscher, and allows the user to select different quality levels, trading off quality with speed; TRandom2 is based on the maximally equidistributed combined Tausworthe generator by L'Ecuyer [7]; the TRandom3 generator implements the Mersenne twister algorithm of Matsumoto and Nishimura [8]. All of the algorithms produce a periodic sequence of numbers, and to obtain effectively random values, one must not use more than a small subset of a single period. The Mersenne twister algorithm has an extremely long period of 2 19937 − 1. The performance of the generators can be investigated with tests such as DIEHARD [9] or TestU01 [10]. Many commonly available congruential generators fail these tests and often have sequences (typically with periods less than 2 32), which can be easily exhausted on modern computers. A short period is a problem for the TRandom generator in ROOT, which, however, has the advantage that its state is stored in a single 32-bit word. The generators TRandom1, TRandom2, or TRandom3 have much longer periods, with TRandom3 being recommended by the ROOT authors as providing the best combination of speed and good random properties. If the desired probability density function is f (x) on the range −∞ < x < ∞, its cumulative distribution function (expressing the probability that x ≤ a) is given by Eq. (31.6). If a is chosen with probability density f (a), then the integrated probability up to point a, F (a), is itself a random variable which will occur with uniform probability density on [0, 1]. If x can take on any value, and ignoring the endpoints, we can then find a unique x chosen from the p.d.f. f (s) for a given u if we set …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

33. Monte Carlo Techniques 33.1. Sampling the Uniform Distribution 33.2. Inverse Transform Method

Monte Carlo techniques are often the only practical way to evaluate difficult integrals or to sample random variables governed by complicated probability density functions. Here we describe an assortment of methods for sampling some commonly occurring probability density functions. Most Monte Carlo sampling or integration techniques assume a " random number generator, " which generates uniform ...

متن کامل

Formalization of Continuous Probability Distributions

Continuous probability distributions are widely used to mathematically describe random phenomena in engineering and physical sciences. In this paper, we present a methodology that can be used to formalize any continuous random variable for which the inverse of the cumulative distribution function can be expressed in a closed mathematical form. Our methodology is primarily based on the Standard ...

متن کامل

Characterizing Probability-based Uniform Sampling for Surrogate Modeling

The fidelity of surrogate models remains one of the primary concerns in their application to represent complex system behavior. Appropriate sampling of training points is one of the primary factors affecting the fidelity of surrogate models. This paper investigates the relative advantage of probability-based uniform sampling over distance-based uniform sampling, in training surrogate models who...

متن کامل

Sampling from a couple of negatively correlated gamma variates

We propose two algorithms for sampling from two gamma variates possessing a negative correlation. The case of positive correlation is easily solved, so we just mention it. The main problem is the lowest value of the correlation coefficient that can be reached. The starting point of both algorithms is generation from a bivariate density with uniform negatively correlated marginals. Actually the ...

متن کامل

34.1. Sampling the Uniform Distribution 34.2. Inverse Transform Method

Monte Carlo techniques are often the only practical way to evaluate difficult integrals or to sample random variables governed by complicated probability density functions. Here we describe an assortment of methods for sampling some commonly occurring probability density functions. Most Monte Carlo sampling or integration techniques assume a " random number generator, " which generates uniform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009